
Synergia
James Amundson and

Panagiotis Spentzouris
Fermilab

Συ
ν

ερ
γε

ια
Synergia

Problem Overview

Synergia Overview

IMPACT

mxyzptlk / beamline

Synergia

combining codes

portable
compilation

interface

documentation

Performance

Scaling

Next Steps

Visualization

OpenDX

Demo

Συ
ν

ερ
γε

ια
General Problem Overview:

Particle Accelerator Modeling

Typical problem: model behavior of

O(1012) particles

Through 100's of elements

100's-1000's-more revolutions in a circular
accelerator

Each particle has six degrees of freedom
(x,p

x
,y,p

y
,z,p

z
)

(Bad News)

Συ
ν

ερ
γε

ια
Single-Particle Dynamics

In many situations, particle-particle
interactions are negligible

Need only to track single particles

Linear approximation

6d-state transformation due to single step
reduces to multiplication by 6x6 matrix (map)

Symplectic = Stable
Errors do not grow with number of steps

(Good News)

Συ
ν

ερ
γε

ια
Multi-Particle Dynamics

Particle-particle interactions are important
in many current problems

Space Charge (issue for Booster)

Interaction of the beam with itself
Our current interest

Others

Beam-beam (issue for Tevatron)

Electron cloud (issue for LHC)

(Bad News Returns)

Συ
ν

ερ
γε

ια
Multi-particle, cont.

Use particle-in-cell (PIC) techniques

Macro particles

Solve continuous equations on discrete grid

65 x 65 x 65 grid typical size

Need ~3,000,000 particles in order to have
an average of 10 particles per cell

Parallel computers are necessary

See performance...

Συ
ν

ερ
γε

ια
More problems in

particle accelerator modeling

Accelerators are complicated devices

Simulations have complicated inputs,
complicated running conditions

Analysis of simulations come in many forms

Multi-particle analyses are more complex than
single-particle analyses

Problems are not simply numerical

Συ
ν

ερ
γε

ια
Tevatron lattice description

E0DOGLEGM:LINE = (DDOGEND1, E0DOGM, DDOGEND1)
E0DOGLEGP:LINE = (DDOGEND1, E0DOGP, DDOGEND1)
E0COLL2: LINE = (DR2COLLEND, ME02UHCL, ME02UVCL, DR2COLL2, E02HCL, &
 E02VCL, DR2COLL2, ME02DHCL, ME02DVCL, DR2COLLEND)
E0COLL3: LINE = (DR2COLLEND, ME03UHCL, ME03UVCL, DR2COLL2, E03HCL, &
 E03VCL, DR2COLL2, ME03DHCL, ME03DVCL, DR2COLLEND)

E0DAMPK: LINE = (DPHDAMPK, D3IN, DPVDAMPK, D3IN, DPBHDAMPK, D3IN, DPBVDAMPK)
E0DAMPPU: LINE = (DHDAMPPU, D3IN, DVDAMPPU)
LSTRE0DR2:LINE = (E0DOGMP2, DDOGEND1, DE0SP6, E0DAMPK, DE0SP7, &
 DBELL7A, E0COLL2, DBELL7A, E0COLL3, DBELL7A, &
 E0DAMPPU, DE0SP8, DGV4, DE0SP9, DTAB, D3IN)

QUADE0D: LINE = (DQUAD1END, HQUAD1F, DQUAD1END)
COLDBYP1: LINE = (DCOLD1)
STRAIGHTE0D: LINE = (DE11END, HFWE11, DE11MID, VFWE11, DE11END)
COLDBYP2: LINE = (DCOLD2)
E0DOWN: LINE = (ME0, LONGSTRE0D, QUADE0D, COLDBYP1, STRAIGHTE0D, COLDBYP2)
E0DOWNR2: LINE = (ME0, LSTRE0DR2, QUADE0D, COLDBYP1, STRAIGHTE0D, COLDBYP2)
QUADE11: LINE = (DBPMIN, HBPME11, DBPMOUT, HQUAD2D, DQOUT1)
PACKE11: LINE = (DBPMIN1,VBPME11,DBPMOUT1,DHQUADC,TSQE0,HDE11,VDE11,&
 DHQUADC, DPACKOUT1)
DIPOLE: LINE = (DBENDEND, BENDQ, BEND, BENDQ, DBENDEND)
E11: LINE = (ME11, QUADE11, PACKE11, 4*DIPOLE)
QUADE12: LINE = (DBPMIN, VBPME12, DBPMOUT, HQUAD3D, DQOUT)
PACKE12: LINE = (DPACKIN, DHQUADC, TSX, TQX, VDE12, DHQUADC, &
 DPACKU2D, DPACKOUT)
E12: LINE = (ME12, QUADE12, PACKE12, 4*DIPOLE)
QUADE13: LINE = (DBPMIN, HBPME13, DBPMOUT, HQUADF, DQOUT)
PACKE13: LINE = (DPACKIN, TQFA4, TSF, HDE13, DPACKU2D, TSQ, DPACKOUT)
PACKE13R2:LINE = (DPACKIN, TQFE1, TSF, HDE13, DPACKU2D, TSQ, DPACKOUT)

Full description is 3574 lines

!
! constants
!

NBENDS := 774.0
BANGLE := TWOPI / NBENDS ! approx. 8.12 mrad
HANGLE = 3.87625450E-03 ! From N. Gelfand file
LAMBBANGLE = 1.83577060E-03 ! From N. Gelfand file
CMAGBANGLE = 1.48790000E-03 ! Changed slightly to make
! 2*HANGLE + 3*LAMBANGLE + 2*CMAGANGLE = 2*BANGLE = 0.016235621
DOGANGLE = 3.272764E-3

LBFIELD = 6.1214
LHBFIELD = 2.921 ! half dipole length according to Norm G.
LLAMB = 5.521706 ! C0 abort lambertson
LCMAG = 3.73888 ! C0 C-magnet
LDOGBEND = 6.0706 ! 239 inches
LSEPTA = 3.5433

! -----------------------------
! main dipoles
! -----------------------------

! Next 4 are defined but never used. They are the magnetic fields in Tesla.
BENDFIELD = BANGLE*BRHO/LBFIELD
HBENDFIELD = HANGLE*BRHO/LHBFIELD
LAMBFIELD = LAMBBANGLE*BRHO/LLAMB
CMAGFIELD = CMAGBANGLE*BRHO/LCMAG

BEND: SBEND, L = LBFIELD, ANGLE = BANGLE
BENDQ: MULTIPOLE, K1L = KBENDQ
HBEND: SBEND, L = LHBFIELD, ANGLE = HANGLE
LAMBBEND: SBEND, L = LLAMB, ANGLE = LAMBBANGLE
CMAGBEND: SBEND, L = LCMAG, ANGLE = CMAGBANGLE

! Next bends are added for fixed target
! They are the dogleg at D0 around the extraction septa and are on
! the Tevatron Main Bus.
! The distance between the upstream DOGPBEND, DOGMBEND is about 4 cm
! different from the distance between the downstream DOGPBEND, DOGMBEND.
! As a result, when these are on, the closure of the Tevatron is
! changed slightly. (This can only be seen in the results of a survey
! command.) The D0BUMPK1 and D0BUMPK2 are probably intended to
! be used as small adjustments to close this bump, but I have not
! ever used them for this. ppb
DOGPBEND: SBEND, L = LDOGBEND, ANGLE = DOGANGLE
DOGMBEND: SBEND, L = LDOGBEND, ANGLE = -DOGANGLE

! E0DOGP and E0DOGM are for the proton removal insert in E0.
! They have their own power supply, the Transrex that used to be used for
! the E0 Lambertsons.
! Most of the time these will be off. When they are turned on, they
! will bend the beams by DOGANGLE (see above)
! E0DOGBEND := 3.272764E-3
! Notice that E0DOGP has a kick of -E0DOGBEND.
! A positive kick is the same sign as the main bends.
! The E0 dogleg should displace the beam to the radial OUTSIDE.
! I've chosen to put them in as closed orbit correctors to make it
! easy to see how much they move the beam. (If I put them in as regular
! bends, I would have to do a survey and figure out how much it moves.)
! ppb 9/12/97
E0DOGBEND := 0.0
E0DOGP: HKICKER, L=LDOGBEND, KICK = -E0DOGBEND
E0DOGM: HKICKER, L=LDOGBEND, KICK = E0DOGBEND...

...

...

Συ
ν

ερ
γε

ια
Existing software

Mature single-
particle tracking
codes are available

Some multi-particle
codes available

Most written from
scratch to address
specific problems

“Just enough” single-
particle code

We have decided to combine the best available
existing codes

A
e
so

p
 b

y
Le

o
 M

ic
h
e
lo

tt
i
(F

N
A

L)

Συ
ν

ερ
γε

ια
The Synergia approach

Take the best of existing codes

Single-particle

Multi-particle

Create a framework

Extensible

Solve practical problems in addition to
numerical problems

Project funded by SciDAC

Συ
ν

ερ
γε

ια
SciDAC Accelerator Modeling Project

Project funded by the
SciDAC DOE program:
$3M in years; FNAL
$.35M

Members of a multi-
institution
collaboration. The charge :
develop the next generation
of parallel computing beam
dynamics and accelerator
modeling tools

Συ
ν

ερ
γε

ια
Accelerator Modeling Collaboration

FNAL
Software Integration, Lie
methods, space charge in
rings, FNAL Booster
sim/expt

UCLA
Parallel PIC
Frameworks

UC Davis
Visualization,
multi-resolution
techniques

SLAC
Ellectromagnetic component
modeling

LBNL
Beam-beam modeling,
space charge in linacs &
rings, parallel Poisson
solvers, collisions

U. Maryland
 Lie Methods in

Accelerator
Physics, MaryLie

LANL
 High order optics,

beam expts, collisions,
multi-language support,

statistical methods

M=e:f2: e:f3: e:f4:…
N=A-1 M A

BNL
Wakefield effects,
Space charge in rings,
BNL Booster
simulation

Συ
ν

ερ
γε

ια
Synergia Overview

Synergia is a
combination of IMPACT,
mxyzptlk/beamline, glue
code and a wrapper

IMPACT

program flow

space charge

mxyzptlk/beamline

mad parser

linear maps

Συ
ν

ερ
γε

ια
IMPACT (Multi-particle code)

Ji Qiang, Robert Ryne and Salman Habib

Developed at LANL, 2/3 now at LBNL

Originally designed for linear accelerators

Fortran 90

Fully parallel
Single-particle tracking

Space charge calculation

Full 3D space charge

Συ
ν

ερ
γε

ια

Split-Operator Methods

H=Hext H=Hsc

M=Mext
M=Msc

H=Hext+Hsc

 M(t)= Mext(t/2) Msc(t) Mext(t/2) + O(t3)

Magnetic
Optics

Multi-Particle
Simulation

Space Charge in IMPACT

Solve Poisson-Vlasov Equation
– particle-in-cell (PIC)

Split Operator Method

Συ
ν

ερ
γε

ια
Parallel Support in IMPACT

Particle Manager

Distributes particles
among processors

Re-distributes
particles after they
have moved

Poisson-Vlasov
solver

Distributes grid
across all processors

Requires global
communication

Συ
ν

ερ
γε

ια
mxyzptlk/beamline library suite

(single-particle code)

Leo Michelotti & Francois Ostiguy, FNAL

C++

first C++ library for accelerator physics

Flexible libraries

Many features

Provides linear maps with arbitrary splittings

MAD file parser
Existing standard for lattice description

Much, much more...

Συ
ν

ερ
γε

ια
mxyzptlk/beamline libraries

basic_toolkit
– Useful utility

classes: Vector,
Matrix...

mxyzptlk
– Automatic

differentiation and
differential algebra

beamline
– Objects for

modeling
elements of a
beamline

physics_toolkit
– analysis and

computation

Machines
– FNAL models

Συ
ν

ερ
γε

ια
Language mixing

Mixing F90 and C++ can be done

Requires some glue

Always platform/compiler-dependent
Macros for general code

Compiling and linking
see configuration management

We have to be very careful to ensure that
our hybrid code is portable to multiple
platforms

... particularly the platforms of interest
Including supercomputers with “interesting” characteristics

Συ
ν

ερ
γε

ια
Glue in Synergia

Added a new element to IMPACT,
“external”
– F90 modifications to IMPACT
– New skeleton F90 module

Created a C++ class, External_class, to
get maps from a MAD file using
beamline

“F90 module” really C++ code that
talks to External_class

Συ
ν

ερ
γε

ια
Configuration Management

Building and installing code is not
glamorous
– In a mixed-language environment it is also

not trivial

Configuration management can rapidly
become a bottleneck

GNU Autotools
– “The worst possible choice, except for all

the others”

Συ
ν

ερ
γε

ια
Building Synergia with

GNU Autotools

First principle: no editing of source or build
files should be necessary

Record known solutions
Not “the autotools way”

In principle

Get mxyzptlk/beamline libraries
./configure && make && make install

Get IMPACT
./configure && make

In practice, there are more decisions to
make...

Συ
ν

ερ
γε

ια
In practice

> ./configure --help
<snip>
 --with-glib-prefix=PFX Prefix where GLIB is installed (optional)
 --with-glib-exec-prefix=PFX Exec prefix where GLIB is installed (optional)
 --with-mxyzptlk-prefix=<dir> Prefix directory for mxyzptlk.

Default is to search /usr/local, \$HOME, \$HOME/opt, \$HOME/mxyzptlk
 --with-mpi-prefix=<dir> Prefix directory for MPI.
 --with-mpi-include-dir=<dir> MPI include directory.

Default is -I\$MPI_PREFIX/include
 --with-mpi-ldflags=<flags> LDFLAGS for linking with MPI.
 --with-mpi-libs=<libs> Libraries for linking with MPI.
 --with-hdf5-prefix=<dir> Prefix directory for HDF5.

Some influential environment variables:
 CXX C++ compiler command
 CXXFLAGS C++ compiler flags
 LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
 nonstandard directory <lib dir>
 CPPFLAGS C/C++ preprocessor flags, e.g. -I<include dir> if you have
 headers in a nonstandard directory <include dir>
 F77 Fortran 77 compiler command
 FFLAGS Fortran 77 compiler flags
 CC C compiler command
 CFLAGS C compiler flags

Συ
ν

ερ
γε

ια
Synergia Build System

Default choices are stored in installation
scripts (configure.in)

This is the “not the autotools way” part

Compile-time choices are recorded
(config.status)

No source-code changes needed for
configuration choices (preprocessor
macros)

New platforms are anticipated (Autotools)

Συ
ν

ερ
γε

ια
Synergia Interface

The program flow in
Synergia is controlled
by IMPACT
– IMPACT's interface is

something less than
human-friendly

● See next slide

Synergia wraps
IMPACT with a
Python Layer
– Unit conversions
– Defaults
– Full power of Python
– Job creation/

submission
● Extensive features

Συ
ν

ερ
γε

ια
IMPACT Interface Example

16 4
6 2746880 1 0 1
65 65 65 4 0.04 0.04 1.51692
2 0 0
0.00268186, 0.000106579, 0 1.000000 1.000000 0.000000 0.000000
0.00268186, 0.000106579, 0 1.000000 1.000000 0.000000 0.000000
0.0940268, 0.000427895, 0 1.000000 1.000000 0.000000 0.000000
0.042 4e+08 9.38272e+08 1.000000 2.01e+08 0.000000
 0 0 81 -2 270.000000/
 474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
 0 0 83 -2 270.000000/
 474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
 0 0 84 -2 270.000000/
 474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
 0 0 85 -2 270.000000/
 474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
 0 0 86 -2 270.000000/
 474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
 0 0 87 -2 270.000000/
 474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
 0 0 88 -2 270.000000/
 474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
 0 0 89 -2 270.000000/
 474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
 0 0 90 -2 270.000000/
 474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
 0 0 91 -2 270.000000/
 474.2 100 1 91 1.0 0. 0.040000 0. 0. 0. 0. 0. /
 0 0 92 -2 270.000000/
 0 0 82 -2 270.000000/

Computational parameters

Input distribution
(in IMPACT's private
system of units)

Lattice description

Συ
ν

ερ
γε

ια
Synergia Interface Example

myopts = options.Options("booster_test3")
myopts.add("numturns",10,"Number of turns",int)
myopts.add("xwidth",0.004,"horizontal width (m)",float)
myopts.add("dpop",3.0e-4,"(delta p)/p",float)

myopts.add_suboptions(impact_parameters.options)
myopts.add_suboptions(synergia.options)
myopts.parse_argv(sys.argv)

ip = impact_parameters.Impact_parameters(impact_parameters.options
 .get_value("sampleperiod"))
ip.apply_options(impact_parameters.options)
pz = ip.gamma() * ip.beta() * ip.mass_GeV
madfile = "booster_sliced.mad"
(D_x, D_y) = madcalc.dispersion_initial(madfile,"bcelinj",
 myopts.get_value("energy"))
(alpha_x, beta_x, alpha_y, beta_y) = madcalc.twiss_initial(madfile,
 "bcelinj")
width_x = myopts.get_value("xwidth")
(width_xprime,r_x,emittance) =
 matching.match_twiss_width(width_x,alpha_x,beta_x)
ip.x_params(sigma = width_x, lam = width_xprime * pz)
booster = impact_elements.External_element(kicks=100, steps=1,
 radius=ipradius,
 mad_file_name=madfile)
numturns = myopts.get_value("numturns")
for turn in range(1,numturns+1):
 ip.add(booster)
 if turn != numturns:
 ip.add(impact_elements.Output_element("turn%02d.dat" % turn,
 sample_period))

User options and
prepackaged options

Direct access to
lattice functions
from MAD files

Full access to python

Obvious names,
physical units

Συ
ν

ερ
γε

ια
How Synergia manages job complexity

Separates descriptions

MAD files for lattices

Python script for job

Full power of Python

Easier to use

Easier to maintain

Manages history and details

booster_test3.py* description pack* wrappedxmain*
cleanup* external_ble.mad@ synergia-pbs.sh* xmain@
command mad_mapping.table test.in

Job directory includes batch script, utilities and history:

Accelerator
simulation
problems are
not simply
numerical

Συ
ν

ερ
γε

ια
Documentation

Documentation is in
the form of web pages

Examples

API

New external users
are starting to help us
refine the
documentation

First applications

FNAL Booster

A0 Photoinjector

Συ
ν

ερ
γε

ια
API Documentation

Documentation
is automatically
generated from
source

always
accurate

extensible

takes
advantage of
the power of
Python

Συ
ν

ερ
γε

ια
API Documentation, cont.

Methods have
descriptive names

optional text

Variables have
descriptive names

including units

Συ
ν

ερ
γε

ια
Performance and Parallelism

Ran benchmarks on
five machines
– abacus

● my 800 MHz laptop

– heimdall (FNAL)
● 32 dual 1.4 GHz

Athlons, 100 Mbit/s
and Gigabit
interfaces

– alvarez (NERSC)
● 80 dual 866 MHz

PIII, Myrinet

– Seaborg (NERSC)
● 6,000+ 375 MHz

POWER3
processors

– Lattice QCD
(FNAL)

● 128 dual 2.4 GHz
Xeons, Myrinet

Συ
ν

ερ
γε

ια
Results with space charge

Συ
ν

ερ
γε

ια
But... are the answers correct?

Validation

Envelope equations: coupled differential equations
describing the evolution of the 2nd moments of the beam
distribution including space charge

FODO channel, KV beam Booster cell, Gaussian beam

Συ
ν

ερ
γε

ια
Particle Manager Performance

An example of a
known issue

Terminology

Matched beam
Periodically returns
to same state

Mismatched beam
Rotates in phase
space

Oscillates in width

Mismatched beam
can lead to a factor
of 3 disparity in
distribution of
particles among
processors

(see particle
manager
visualization)

Συ
ν

ερ
γε

ια
Next steps in development

Synergia development to date has been
driven by FNAL Booster applications

Further applications will be easier if the
program flow is made more flexible

Adding new physics can be made much easier

This is work in progress

Συ
ν

ερ
γε

ια
Current Scheme

cons, cont.

interfaces pass through
text file

...and must be parsed
by Fortran code

IMPACT features (parallelism,
SC) not exportable

Human Interface
Python

test.in
text file

Program Flow
Fortran 90

MAD
C++

RF
Fortran90

Injection
Fortran90

..
.

..
.

..
.

Particle
Propagation

Space Charge

..
.

..
.

M
P

I

pros

simple to implement

minimal platform-related
problems

cons

difficult to extend for
new physics

must extend IMPACT
object system with N2
connections

Συ
ν

ερ
γε

ια
Next Step

program flow split into
modules

still limited by text
file

still bound by IMPACT
object system

no additional
platform-dependent
problems

Human Interface
Python

test.in
text file

Program Flow
Fortran 90

MAD
C++

RF
Fortran90

Injection
Fortran90

..
.

..
.

..
.

M
P

I

Space Charge
Fortran90

Propagation
Fortran90

Συ
ν

ερ
γε

ια
Final Goal

Human Interface
Program Flow

Python

MAD
C++

RF
Fortran90

Injection
Fortran90

..
.

..
.

..
.

M
P

I

Space Charge
Fortran90

Propagation
Fortran90

pros

greatly enhanced
flexibility

new physics modules
can be trivially added

beam-beam
etc.

dynamic loading
possible

better interface
definition

cons

platform-dependent
problems increased

Python MPI

Calls between Python,
Fortran 90 and C++

Συ
ν

ερ
γε

ια
Alternate Plan

pros

interface between Python and
other languages limited

does not rely on Python MPI

cons

requires more complex Python-
C++ program flow interface

easier than doing same in
Fortran90

Human Interface
Python

Program Flow
C++

MAD
C++

RF
Fortran90

Injection
Fortran90

..
.

..
.

..
.

M
P

I

Space Charge
Fortran90

Propagation
Fortran90

Συ
ν

ερ
γε

ια
Visualization

Two-dimensional plotting tools are
inadequate for analyzing data in many
dimensions

Horizontal phase space (x,p
x
)

Συ
ν

ερ
γε

ια
OpenDX

OpenDX is a multi-
dimensional visualization
package

Originally IBM's DX ($$$$)

Very powerful

Very steep initial learning
curve

Visual programming
Also has a scripting language

Animation is easy

Συ
ν

ερ
γε

ια
OpenDX Example

Συ
ν

ερ
γε

ια
A more complex example

